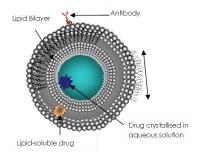
Journal of Chemical and Pharmaceutical Sciences

Liposomes on drug delivery system

P.Nagarani^{*} & M.Kishore Babu

Department of Pharmaceutics, Bapatla College of Pharmacy, Bapatla-522101, India *Corresponding author: E mail: kishorecollagen@gmail.com


ABSTRACT

Liposomes are result of self assembly of phospholipid in an aqueous media resulting in closed bilayered structures. Liposomes are one of unique delivery system which can be use in controlling and targeting drug delivery system. Liposomes are generally classified mainly based structure, method of preparation, composition and application, conventional liposome's, and specialty liposome. Liposomes are formulated, processed and differ in size, composition, charge and lamellarity, depeg upon method of preparation either active loading technique or passive loading technique. The prepared liposomes are characterized for visual appearance, liposome size distribution, lamellarity, liposome stability, entrapped volume and surface charges. Different liposomal formulations are available in market. The liposomes have many applications which increase its importance over other formulations.

KEY WORDS: bilayered, phospholipid, targeting drug delivery system

INTRODUCTION

Liposome, first described in 1965 and initially as models for studying the biological membranes have been considered more frequently as drug carries for several drugs tp reduce toxicity or to deliver the drug at site of action. Liposomes are now finding application in commercial development as dosage form. Liposomes are spherical vesicles composed of an aqueous core surrounded by a membrane that is usually composed of phospholipids. Liposomes have a size range from nanometres to micrometers. The composition of the aqueous core as well as a lipid membrane gives the liposome the ability to incorporate both hydrophilic and hydrophobic drugs (Chauhan, 2012; Kant, 2012)

Figure.1.Typical Liposome Structure

Classification of liposomes (Alving, 1998):

Liposomes are classified on the basis of:

- A. Structure.
- B. Method of preparation.
- C. Composition and application.
- D. Conventional liposome.
- E. Specialty liposome.

Classification Based on Structure:

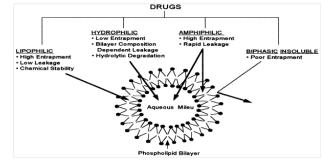


Figure.2.Types of drugs and site of their incorporation into liposomal vesicle

Table.1. Vesicle Types with their size and number of inplu layers				
Vesicle type	Abbreviation	Diameter size	No. of lipid bilayer	
Unilamellar	UV	All size ranges	One	
Small Unilamellar	SUV	20-40 nm	One	
Medium Unilamellar	MUV	40-80 nm	One	
Large Unilamellar	LUV	More than 100 nm	One	
Giant Unilamellar	GUV	More than 1 µm	One	
Oligolamellar	OLV	0.1 – 1 μm	5	
Multilamellar	MLV	More than 0.5 µm	5-25	
Multi vesicular	MV	More than 1 µm	Multi compartmental structure	

Table.1.Vesicle Types with their size and number of lipid layers

www.jchps.com **Classification based on method of preparation:** Table 2 Different Durantian Matheds and the Verialez Formed by these Matheds

Table.2.Different Preparation Methods and the vesicles Formed by these Methods		
Method of preparation	Vesicle type	
Single or oligo lamellar vesicle made by reverse phase evaporation method	REV	
Multi lamellar vesicle made by reverse phase evaporation method	MLV-REV	
Stable pluri lamellar vesicle	SPLV	
Frozen and thawed multi lamellar vesicle	FATMLV	
Vesicle prepared by extrusion technique	VET	
Dehydration- Rehydration method	DRV	

Classification based on composition and application:

Table.3.Different Liposome with their Compositions

Type of liposome	Abbreviation	Composition	
Conventional liposome	CL	Neutral of negatively charge phospholipids and cholesterol	
Fusogenic liposome	RSVE	Reconstituted sendai virus enveops	
pH sensitive liposomes	Phospholipids such as PER or DOPE with either CHEM		
	-	or OA	
Cationic liposome	-	Cationic lipid with DOPE	
Long circulatory liposome	LCL	Neutral high temp, cholesterol and 5-10% PEG, DSP	
Immune liposome	IL	CL or LCL with attached monoclonal antibody or recognition sequences	

Classification based upon conventional liposome

- 1. Stabilize natural lecithin (PC) mixtures
- 2. Synthetic identical, chain phospholipids
- 3. Glycolipids containing liposome

Classification based upon specialty liposome

- 1. Bipolar fatty acid
- 2. Antibody directed liposome.
- 3. Methyl/ Methylene x- linked liposome.
- 4. Lipoprotein coated liposome.
- 5. Carbohydrate coated liposome.
- 6. Multiple encapsulated liposome

Materials used for liposome preparation (Chapman, 1974):

- 1. Phospholipids
- 2. Sphingolipids
- 3. Sterols
- 4. Synthetic phospholipids
- 5. Polymeric materials
- 6. Polymer bearing lipids
- 7. Cationic lipids
- 8. Other substances.

Advantages of liposomes(Deamer, 1980; De Marie, 1994; Crommelin, 1995; Emanuel, 1996):

- Provide controlled drug delivery
- Liposomes are biocompatible, completely biodegradable, non toxic and nonimmunogenic..
- Reduced toxicity and increased stability. •
- Reduce exposure of sensitive tissues to toxic drugs. •
- Enhancement of drug penetration •
- Provide sustained release
- Targeted drug delivery or site specific drug delivery
- Alter pharmacokinetics and pharmacodynamics of drug •

July-September 2014

www.jchps.com

- Disadvantages of liposomes:Production cost is high
 - Leakage and fusion of encapsulated drug/molecules
 - Short half-life

Methods of liposome preparation (Riaz, 1996): The correct choice of liposome preparation method depends on the following parameters:

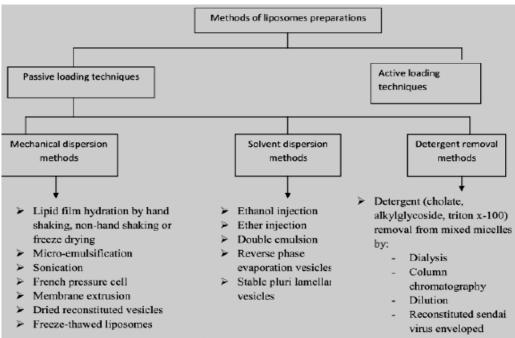
1: The physicochemical characteristics of the material to be entrapped and those of the liposomal ingredients;

- 2. The nature of the medium in which the lipid vesicles are dispersed.
- 3. The effective concentration of the entrapped substance and its potential toxicity.
- 4. Additional processes involved during application/delivery of the vesicles.

5. Optimum size, polydispersity and shelf-life of the vesicles for the intended application; and, batch-to-batch reproducibility and possibility of large-scale production of safe and efficient liposomal product.

Preparation of liposomes (Wen, 2006; Lasic, 1990):

The preparation of all types of vesicular systems requires the input of energy generally all the methods of liposome preparation involve three basic stages


1. Drying down of mixture of lipids from an organic solvent.

- 2. Dispersion of lipids in aqueous media.
- 3. Separation and purification of resultant liposomes.

Drug can be incorporated into the aqueous solution or buffer if it is water soluble orincluded in organic solvent if it is hydrophobic.

Applications of liposomes (Emanuel, 1996):

- Cancer chemotherapy
- Gene therapy
- Liposomes as carriers for vaccines
- Liposomes as carrier of drug in oral treatment
- Liposomes for topical applications
- Liposomes for pulmonary delivery
- Against Leishmaniasis
- Lysosomal storage disease
- Cell biological application
- Metal storage disease and Ophthalmic delivery of drug.

Figure.3.Different methods of liposomes preparations

Table.4.Liposome character	vization (Mayhew.	1985)
\mathbf{I} and \mathbf{I}	12au 011 (191a y 110 W).	1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

Table.4.Liposonie characterization (Maynew, 1983)				
Characterization parameters	Analytical methods/ instrumentation			
Physical Characterization				
Vesicle (Size, shape & Surface morphology,	TEM, Freeze fracture electron microscopy			
Size distribution)	DLS, Zetasizer, TEM, PCR, gel permeation, Exclusion			
Surface charge	Free flow electrophoresis			
Electric surface potential &pH	Zeta potential measurement, pH Probes			
Lamellarity	SAXS, 31NMR, Freeze fracture EM			
Phase behavior	DSC, freeze fracture electron microscopy			
% Entrapment Efficiency	Minicolumn centrifugation, gel exclusion, ion exachange, protamine			
	aggregation, radiolabelling			
Drug release	Diffusion cell/ dialysis			
Chem	ical Characterization			
Concentration				
Phospholipid:	Barlett/Stewart assay,HPLC			
Cholestrol:	Cholestrol oxidase assay, HPLC			
Drug:	Method as in individual monograph			
Phospholipid:	UV absorbance, TBA, iodometric, GLC, HPLC, TLC, Fatty			
per oxidation Hydrolysis	Acid Conc.			
Cholestrol auto-oxidation	HPLC, TLC			
Anti-oxidant degradation	HPLC, TLC			
pН	pH meter			
Osmolarity	Osmometer			
Biological characterization				
Sterility	Aerobic/anaerobic culture			
Pyrogenicity	Rabbit fever response(LAL test)			
Animal toxicity	Monitoring survival rates, Histopathology			

Table.5.Various Marketed Liposomal Formulations (Payne, 1986)

Trade name	Generic name	Application	Company
Ambisome TM	Amphotericin B	Antifungal activity	NeXstar Pharmaceuticals, Inc., CO
Abelcet TM	Amphotericin B	Antifungal activity	The Liposome Company, NJ
Amphotec TM	Amphotericin B	Antifungal activity	Sequus Pharmaceuticals, Inc., C.A.
Doxil	Doxorubicin	Metastatic ovarian cancer and advanced Kaposi's sarcoma	Sequus Pharmaceuticals, Inc., C.A.
Dauno Xome TM	Daunorubicin	Cancers	NeXstar Pharmaceuticals, Inc., CO
MiKasome	Amikacin	Bacterial infections	NeXstar Pharmaceuticals, Inc., CO
DC99	Doxorubicin	Metastatic breast cancer	Liposome Co., NJ, USA
Epaxal	Hepatitis A Vaccine	Hepatitis A	Swiss Serum Institute, Switzerland
ELA-Max	Lidocaine		Biozone Labs, CA, USA
Myocet TM	Doxorubicin	Metastatic breast cancer	zeneus
Depocyt	Cytarabine	Neoplastic and lymphomatous meningitis	enzon pharmaceuticals

CONCLUSION

The development of liposomes as carriers for therapeutic molecules is an ever-growing research area. The possibility of modulating the technological characteristics of the vesicles makes them highly versatile both as carriers of several types of drugs (from conventional chemotherapeutics to proteins and peptides) and in therapeutic applications (from cancer therapy to vaccination). In recent years, several important formulations for the treatment of different diseases have been developed. Liposomes allowed a significant vesicular carrier system for therapeutic effectiveness in terms of duration of action and decrease in dose dose frequency and delivering drugs at a higher

July-September 2014

www.jchps.com

Journal of Chemical and Pharmaceutical Sciences

efficacy and lower toxicity. They do, hwo ever have limitations and as far as drug delivery goes there seems to be an emphasis on the use of sterically stabilized liposomes.

REFERENCES

Alving CR, Macrophages, as targets for delivery of liposome encapsulated antimicrobial agents, Adv Drug Delivery Rev, (2),1998, 2-4.

Chapman Allison CJ, Gregoriadis AC, Liposomes as immunological adjuvant, Nature, 1974, 252.

ChauhanTikshdeep, Arora Sonia, Parashar Bharat, Chandel Abhishek, Liposome Drug Delivery: A Review, International Journal of Pharmaceutical and Chemical Sciences, 1(3), 2012, 756.

Crommelin JA, Liposomes Lasic DD, Papahadjopoulos D, Liposomes revisited, Science, 267,1995, 1275-6.

Crow JH, Spargo BJ and Crow LM, Proc. Natl. Acad. Sci, USA, 84, 1987, 1537.

De Marie, Janknegt R,Bakker-Woudenberg, Clinical use of liposomal and lipid complexed Amphotericin B, J. Antimicrob. Chemother, 33,1994, 907-16.

Deamer D,Uster P, Liposome preparation methods and monitoring liposome fusion, In:Baserga R ,Croce C,Royeza G(Eds).Introduction of macromolecules into viable mammalian Cells, Alan R. Liss,New York, 1980, 205-20.

Emanuel N,Kedar E,Bolotin EM,Smorodinsky NI,Barenholz Y, Preparation and characterisationbof doxorubicinloaded sterically stabilised immunoliposomes, Pharm. Res, 13, 1996, 352-9.

Kant Shashi, Kumar Satinder, Prashar Bharat, A complete review on: Liposomes, International Research Journal of Pharmacy, 3(7), 2012, 11-2.

Lalitha K Lende, Grampurohit ND, Gaikwad DD, Gadhave MV, Jadhav SL, A review on:Liposomal Drug Delivery, WJPPS, 1(4), 2012, 1211.

Lasic DD, On the thermodynamic stability of liposomes, J Colloid Interface Sci, 140, 1990;302-4.

Mayhew E, Nikolopoulos GT, King JJ and Siciliano AA, Pharm. Manufacturing, 2, 1985, 18.

Payne NI, Browning I, Hynes CA.J. Pharm. Sci, 75, 1986, 330.

Riaz M, Liposome preparation method, Pakistan Journal of Pharmaceutical Sciences, (1), 1996, 65-77.

Vyas SP, Khar RK, Targeted and controlled drug delivery: Novel carrier systems, Edition 1, CBS Publishers & Distributors, New Delhi, India, 2006, 421-7.

Weiner N, Martin F and Riox M, Liposomes as drug delivery system, Drug Dev Ind Pharm, 15(10), 1989, 1523-54.

Wen AH, Choi MK and Kim DD, Formulation of Liposome for topical Delivery of Arbutin, Arch Pharm Res 29(12), 2006, 1187-92.